On the variable sum exdeg index and cut edges of graphs
نویسندگان
چکیده مقاله:
The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number, du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.
منابع مشابه
Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index
Recently, discrete and variable Adriatic indices have been introduced and it has been shown that the sum α -exdeg index is good predictor (when variable parameter is equal to 0.37 ) of the octanol-water partition coefficient for octane isomers. Here, we study mathematical properties of this descriptor. Namely, we analyze extremal graphs of this descriptor in the following classes: the class of ...
متن کاملEla on the Estrada Index of Graphs with given Number of Cut Edges
Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.
متن کاملOn the Estrada index of graphs with given number of cut edges
Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.
متن کاملon the general sum–connectivity co–index of graphs
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملOn the spectral moment of graphs with k cut edges
Let A(G) be the adjacency matrix of a graph G with λ1(G), λ2(G), . . . , λn(G) its eigenvalues in non-increasing order. Call the number Sk(G) := ∑ n i=1 λ i (G) (k = 0, 1, . . . , n − 1) the kth spectral moment of G. Let S(G) = (S0(G), S1(G), . . . , Sn−1(G)) be the sequence of spectral moments of G. For two graphsG1 and G2, we have G1 ≺s G2 if Si(G1) = Si(G2) for i = 0, 1, . . . , k−1 and Sk(G...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 249- 257
تاریخ انتشار 2021-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023