On the variable sum exdeg index and cut edges of graphs

نویسندگان

  • Adnan Aslam Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore (RCET), Pakistan
  • Ansa Kanwal Knowledge Unit of Science, University of Management and Technology, Sialkot, Pakistan
  • Bawfeh Kometa Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
  • Naveed Iqbal Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
  • Zahid Raza Department of Mathematics, College of Sciences, University of Sharjah, Sharjah, UAE
چکیده مقاله:

The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number,  du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Recently, discrete and variable Adriatic indices have been introduced and it has been shown that the sum α -exdeg index is good predictor (when variable parameter is equal to 0.37 ) of the octanol-water partition coefficient for octane isomers. Here, we study mathematical properties of this descriptor. Namely, we analyze extremal graphs of this descriptor in the following classes: the class of ...

متن کامل

Ela on the Estrada Index of Graphs with given Number of Cut Edges

Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.

متن کامل

On the Estrada index of graphs with given number of cut edges

Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.

متن کامل

on the general sum–connectivity co–index of graphs

in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index  is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

On the spectral moment of graphs with k cut edges

Let A(G) be the adjacency matrix of a graph G with λ1(G), λ2(G), . . . , λn(G) its eigenvalues in non-increasing order. Call the number Sk(G) := ∑ n i=1 λ i (G) (k = 0, 1, . . . , n − 1) the kth spectral moment of G. Let S(G) = (S0(G), S1(G), . . . , Sn−1(G)) be the sequence of spectral moments of G. For two graphsG1 and G2, we have G1 ≺s G2 if Si(G1) = Si(G2) for i = 0, 1, . . . , k−1 and Sk(G...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  249- 257

تاریخ انتشار 2021-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023